A CONVENIENT PREPARATION OF 2-SUBSTITUTED 2-CYCLOPENTENONES FROM CYCLOPENTANONE USING 2-(MORPHOLINOTHIO) BENZOTHIAZOLE

Sigeru TORII, Hideo TANAKA, Toshihiro KUDAI, and Sinichi WATANABE
Department of Industrial Chemistry, School of Engineering, Okayama
University, Tsushima, Okayama 700

2-Substituted 2-cyclopentenones ( $\underline{4}$ ), a precursor of jasmonoids, were prepared in 47-77% overall yields from cyclopentanone ( $\underline{1}$ )  $\underline{\text{via}}$  2-(2-benzothiazolylthio)cyclopentanone (2). Treatment of  $\underline{1}$  with 2-(morpholinothio)benzothiazole gave  $\underline{2}$  in 98% yield. Alkylation of  $\underline{2}$  with RBr-K $_2$ CO $_3$ -KI-acetone followed by removal of the 2-mercaptobenzothiazole by thermolysis in benzene containing p-TsOH at 140  $^{\circ}$ C afforded  $\underline{4}$  smoothly.

One of the fruitful precursors of jasmonoids synthesis must be 2-substituted 2-cyclopentenones  $(\underline{4})$  and much effort has been made to prepare  $\underline{4}$  by different synthetic procedures. Here, we wish to report a straightforward synthesis of  $\underline{4}$  starting from readily available cyclopentanone  $(\underline{1})$ , which comprises following three-step operations: (1) introduction of a 2-benzothiazolylthio group (BT-S) at the  $\alpha$ -position of  $\underline{1}$ , (2) alkylation of the  $\alpha$ -sulfenyl ketone  $\underline{2}$ , and (3) subsequent  $\beta$ -elimination of 2-mercaptobenzothiazole  $(\underline{6})$  from  $\underline{3}$  leading to  $\underline{4}$  (Scheme 1).

The introduction of the sulfenyl group at the  $\alpha$ -position of alkanones has been carried out by the reaction with disulfides using appropriate bases. 

The reported procedures, however, seem to be laborious and expensive. 
In order to find out a more convenient and reactive sulfenylating reagent, we examined various sulfenamides 
(Table I) and found that 2-(morpholinothio)-benzothiazole  $(\underline{5})^4$ ) was one of the adequate reagents for the present purpose. Moreover, the sulfenylating reagent  $\underline{5}$  can be reproduced from the recovered  $\underline{6}$  by the electrochemical procedure as shown in the Scheme.

Treatment of  $\underline{1}$  (12 mmol) with  $\underline{5}$  (12 mmol) in benzene (5 ml) involving acetic acid (6 mmol) at 55-60 °C for 7 h afforded  $\underline{2}$  in 98% yield as white crystals (entry 5 in Table I), mp 115-116 °C (from CCl<sub>4</sub>); IR (Nujol) 1745 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  1.6-3.0 (m, 6, CH<sub>2</sub>), 4.2 (t, 1,  $\underline{J}$  = 9 Hz, CH). Alkylation of  $\underline{2}$  (4 mmol) with 2-pentynyl, allyl, and propargyl bromide (4.5 mmol) in refluxing acetone (15 ml) in the presence of potassium carbonate (40 mmol) and potassium iodide (4 mmol) for 12 h gave the corresponding C-alkylation products  $\underline{3}$  in 90-95% yields in contrast to the result with pentyl bromide, which afforded C- and O-alkylation products  $\underline{3b}$  and  $\underline{7}$  in 53% yield in a ratio of 1/5.

The transformation of  $\underline{3}$  into  $\underline{4}$  was accomplished by the acid-catalyzed thermolysis (Table II). The pyrolysis of  $\underline{3a}$  in the presence of  $\underline{ca}$ . 10% of

cat. AcOH

ON —S—BT

ONH

$$\frac{1}{2}$$

R—Br

 $K_2\text{CO}_3$ —KI—Acetone

 $\Delta$ 

S—BT

 $\frac{6}{2}$ 

Cat. P-TsOH,  $\Delta$ 
 $\frac{3}{2}$ 
 $\frac{3}{4}$ 

R

 $\frac{4}{2}$ 
 $\frac{3}{2}$ 
 $\frac{4}{2}$ 
 $\frac{R}{2}$ 
 $\frac{1}{2}$ 
 $\frac{3}{2}$ 
 $\frac{4}{2}$ 
 $\frac{R}{2}$ 
 $\frac{1}{2}$ 
 $\frac{1}{2}$ 

p-toluenesulfonic acid (p-TsOH) at 115 °C for 5 min under nitrogen followed by distillation under reduced pressure afforded olefins 4a and 2-(2-pentynylidene)cyclopentanone  $8^{6}$ ) in 73% yield in a ratio of 3/1 (entry 1). The prolonged heating favors the formation of the endo-isomer 4a, but the total yield of olefins As shown in entry 4, the dropping of a mixture decreased (entries 2 and 3). of 3a and p-TsOH (ca. 10%) on the preheated glass sand at 250-300  $^{\circ}$ C under removal of the products by continuous distillation (ca. 3 mmHg) gave 4a and 8 in an equal The results indicate that in the initial stage of the reaction thermal decomposition of 3a would occur competitively to give endo- and exo-olefins via path (a) and (b) in a ratio of 1/1 and subsequent isomerization of the exo-olefin 8 into endo-olefin 4a would proceed by acid-catalyzed reaction (Scheme 2). Actually, heating a mixture of 4a and 8 (3/1) in benzene containing p-TsOH (ca. 10%) at 140 °C for 1 h gave 4a as a sole product. On the other hand, thermolysis of 3 in benzene containing p-TsOH (ca. 10-20%) in a sealed tube at 140-170  $^{\circ}$ C for 10-15 min afforded the desired 4 in 51-84% yields (entries 5-8). $^{7)}$ 

|       |              | 7                                                                                  |                 |                                 |       |      |                        |  |
|-------|--------------|------------------------------------------------------------------------------------|-----------------|---------------------------------|-------|------|------------------------|--|
| Entry | Sulf         | Fenamide $Y-S-N < \frac{R^2}{R^2}$                                                 | AcoH            | Solvent                         | Temp. | Time | Product                |  |
|       | ya)          | $R^1$ $R^2$                                                                        | <sup>8</sup> p) |                                 | °c    | h    | Yield, % <sup>c)</sup> |  |
| 1     | Ph           | -(CH <sub>2</sub> ) <sub>2</sub> O-(CH <sub>2</sub> ) <sub>2</sub> - <sup>d)</sup> |                 | Сн <sub>2</sub> Сl <sub>2</sub> | 20-25 | 10   | 0 <sup>e)</sup>        |  |
| 2     | <u>N</u> -(F | Phenylthio)phthalimide                                                             | ***********     | "                               | 20-25 | 10   | 0 <sup>e)</sup>        |  |
| 3     | вт           | -(CH <sub>2</sub> ) <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -              |                 | 11                              | 15-20 | 10   | 63                     |  |
| 4     | n            | 11                                                                                 |                 | Benzene                         | 50-60 | 7    | 72                     |  |
| 5     | "            | 11                                                                                 | 50              | "                               | 55-60 | 7    | 98                     |  |
| 6     | "            | -(CH <sub>2</sub> ) <sub>5</sub> - <sup>d)</sup>                                   | 50              | "                               | 55-60 | 7    | 85                     |  |
| 7     | 11           | Cyclohexyl H <sup>d)</sup>                                                         | 50              | 11                              | 55-60 | 7    | 65                     |  |
| 8     | 11           | iso-Pr iso-Pr <sup>d)</sup>                                                        | 100             | 11                              | 55-60 | 7    | trace                  |  |

Table I.  $\alpha$ -Sulfenylation of Cyclopentanone with Sulfenamides

Table II. Thermolysis of 2-Substituted 2-(2-benzothiazolylthio)cyclopentanones

| Entry | Substrate 3 | <u>p</u> -TsOH<br>% (W/W) |         | Temp.             | Time<br>min | Product, | <sub>g</sub> a)<br>8 |
|-------|-------------|---------------------------|---------|-------------------|-------------|----------|----------------------|
| 1     | <u>3a</u>   | 10                        | Neat    | 115 <sup>C)</sup> | 5           | 55       | 18                   |
| 2     | <u>3a</u>   | 10                        | 11      | 115               | 10          | 65       | 13                   |
| 3     | <u>3a</u>   | 10                        | II .    | 115               | 15          | 34       | 6                    |
| 4     | <u>3a</u>   | 10                        | 11      | 250-300           | d)          | 36       | 36                   |
| 5     | <u>3a</u>   | 10                        | Benzene | 140 <sup>C)</sup> | 10          | 51       | trace <sup>e)</sup>  |
| 6     | <u>3b</u>   | 15                        | 11      | 140               | 10          | 84       | trace <sup>e)</sup>  |
| 7     | <u>3c</u>   | 20                        | **      | 140               | 15          | 81       | trace <sup>e)</sup>  |
| 8     | <u>3c</u>   | 15                        | "       | 170               | 10          | 81       | trace <sup>e)</sup>  |

a) Isolated yields after column chromatography (SiO $_2$ , hexane). b) Without addition of p-TsOH 3a was recovered. c) The decomposition did not occur below 100  $^{\rm O}$ C. d) The products were removed by continuous distillation. e) The thiol 6 was obtained in 85-97% yields as white crystals when the reaction mixture was extracted with aqueous 1  $\underline{\rm M}$  NaOH and the aqueous solution was acidified with aqueous 1  $\underline{\rm M}$  HCl.

a) Ph = phenyl; BT = 2-benzothiazolyl. b) Mol/mol, based on the sulfenamides.

c) Isolated yields after column chromatography ( $SiO_2$ , benzene/AcOEt, 10/1).

d) Electrosynthesized according to the reported procedure: reference 4.

e) Unchanged sulfenamides were recovered in 85-90%.

f) Electrosynthesized from diphenyl disulfide and phthalimide: S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., in contribution.

$$\frac{1}{2}$$
 $\frac{1}{2}$ 
 $\frac{1}$ 

## References and Notes

- (a) S. Torii and H. Tanaka, Koryo, <u>114</u>, 41 (1976); (b) T.-L. Ho, Synth. Commun., <u>4</u>, 256 (1974).; (c) R. A. Ellison, Synthesis, <u>1973</u>, 397; (d) P. Bakuzis and M. L. F. Bakuzis, J. Org. Chem., <u>42</u>, 2362 (1977); (e) R. F. Abdulla and K. H. Fuhr, ibid., 43, 4248 (1978) and references cited therein.
- 2) B. M. Trost, Chem. Rev., 78, 363 (1978) and references cited therein.
- 3) Sulfenylation of active methylene compounds with sulfenamides has been reported: T. Kumamoto, S. Kobayashi, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 45, 866 (1972) and see also reference 2. Similar sulfenylation of alkanones, however, has not yet been reported.
- 4) S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., 43, 3223 (1978).
- 5) Satisfactory elemental analyses and spectral data were obtained in the products, 3a: IR (neat) 3050 (HC=C), 1740 cm<sup>-1</sup> (C=O); NMR (CDCl<sub>3</sub>)  $\delta$ 1.1 (t, 3,  $\underline{J}$  = 7 Hz, CH<sub>3</sub>), 1.6-2.8 (m, 8), 2.9 (m, 2, CH<sub>2</sub>C=C), 7.0-8.0 (m, 4, HC=C),  $3\underline{b}$ : IR (neat) 3060 (HC=C), 1740 cm<sup>-1</sup> (C=O); NMR (CDCl<sub>3</sub>)  $\delta$ 0.9 (t, 3,  $\underline{J}$  = 4 Hz, CH<sub>3</sub>), 1.1-3.0 (m, 14), 7.0-8.0 (m, 4, HC=C),  $3\underline{c}$ : IR (neat) 3060 (HC=C), 1737 (C=O), 1640, 1625 (C=C), 990, 920 cm<sup>-1</sup> (HC=C); NMR (CDCl<sub>3</sub>)  $\delta$ 1.6-3.0 (m, 6), 4.7-6.2 (m, 3, HC=C), 7.0-8.0 (m, 4, HC=C),  $3\underline{d}$ : IR (neat) 3285 (HC=C), 3050, 3030 (HC=C), 2120 (C=C), 1740 cm<sup>-1</sup> (C=O); NMR (CDCl<sub>3</sub>)  $\delta$ 1.9 (m, 1, HC=C), 1.8-3.0 (m, 6), 3.0 (m, 2, CH<sub>2</sub>C=C), 7.0-8.0 (m, 4, HC=C), 7: IR (neat) 3070, 3040 (HC=C), 1625 cm<sup>-1</sup> (C=C); NMR (CDCl<sub>3</sub>)  $\delta$ 0.8 (t, 3,  $\underline{J}$  = 6 Hz, CH<sub>3</sub>), 1.1-2.9 (m, 12), 4.1 (t, 2, J = 6 Hz, CH<sub>2</sub>O), 7.0-7.9 (m, 4, HC=C).
- 6) IR and NMR spectra and elemental analysis were in agreement with the assigned structure 8: bp 61-62  $^{\circ}$ C/0.15 Torr; IR (neat) 2230 (C C), 1710 (C=O), 1620 cm  $^{-1}$  (C=C); NMR (CDCl<sub>3</sub>)  $\delta$  1.2 (t, 3,  $\underline{J}$  = 7 Hz, CH<sub>3</sub>), 1.6-3.0 (m, 8), 6.3 (m, 1, HC=C).
- 7) The products 4 were identical in all respects with the reported ones: reference 1.